biologrefs.ru

2.7 Современная концепция биосферы

Сортировать: по оценкам | по дате

25.09.18
[1]
переходы:20
2.7 Современная концепция биосферы

^ 2.7 Современная концепция биосферы

Термин биосфера - впервые был предложен Ламарком в 1802 году, а в 1875 Зюсс применил этот термин для обозначения живой оболочки земли. Учение о биосфере разработал Вернадский, который, биосферой назвал оболочку земли, в формировании которой живые организмы играют основную роль.

Биосфера — сложная многокомпонентная система, включающая всю живую и неживую природу. Она охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, взаимосвязанные биогеохимическими циклами миграции веществ и энергии.

В.И. Вернадский рассматривал биосферу как область жизни, включающую наряду с организмами и среду их обитания. Он выделил в биосфере семь разных, но геологически взаимосвязанных типов веществ.


Косное вещество — неживые тела, образующиеся в результате процессов, не связанных с деятельностью живых организмов (породы магматического и метаморфического происхождения, неко­торые осадочные породы).


Биогенное вещество — неживые тела, образующиеся в результате жизнедеятельности живых организмов (некоторые осадоч­ные породы: известняки, мел и др., а также нефть, газ, каменный уголь, кислород атмосферы и др.).


Биокосное вещество — биокосные тела, представляющие собой результат совместной деятельности живых организмов и геологи­ческих процессов (почвы, илы, кора выветривания и др.).


Радиоактивное вещество — атомы радиоактивных элементов (например, уран (238U, 235U), торий (232Th), радий (226Ra) и радон (222Rn, 220Rn), калий (40К), рубидий (87Rb), кальций (Са), цирконий (96Zr), тритий (3Н), бериллий (7Ве, 10Ве) и углерод (14С) и др.


Рассеянные атомы — отдельные атомы элементов, встречающиеся в природе в рассеянном состоянии (в таком состоянии часто существуют атомы микро- и ультромикроэлементов: Mn, Co, Zn, Си, Аи, Нд и др.)


Вещество космического происхождения — вещество, поступающее на поверхность Земли из космоса (метеориты, космическая пыль).

Живое вещество биосферы обладает уникальными особенностями, обусловливающими его крайне высокую среобразующую деятельность (по Н.А. Воронкову, 1997).

По В.И. Вернадскому, биосфера включает все части земной коры, на которые воздействовали живые организмы в течение всей геологической истории.

обладает рядом свойств.

^ Целостность и дискретность. Целостность биосферы обусловле­на тесной взаимосвязью слагающих ее компонентов. Она достигается круговоротом вещества и энергии. Изменение одного компонента неизбежно приводит к изменению других и биосферы в целом. При этом биосфера — не механическая сумма компонентов, а качественно новое образование, обладающее своими особенностями и развивающееся как единое целое. Биосфера — система с прямыми и обратными (отрицательными и положительными) связями, которые, в конечном счете, обеспечивают механизмы ее функционирования и устойчивости. На понимании целостности биосферы основывается теория и практи­ка рационального природопользования. Учет этой закономерности позволяет предвидеть возможные изменения в природе, дать прогноз результатам воздействия человека на природу.

Централизованность. Центральным звеном биосферы выступают живые организмы (живое вещество). Это свойство, к сожалению, часто недооценивается человеком и в центр биосферы ставится только один вид — человек (идеи антропоцентризма).

^ Устойчивость и саморегуляция. Биосфера способна возвращаться в исходное состояние, гасить возникающие возмущения, создаваемые внешними и внутренними воздействиями, включением определенных механизмов. Гомеостатические механизмы биосферы связаны в основном с живым веществом, его свойствами и функциями. Биосфера за свою историю пережила ряд таких возмущений, многие из которых были значительными по масштабам (извержения вулканов, встречи с астероидами, землетрясения и т.п.). Гомеостатические механизмы биосферы подчинены принципу Ле Шателье—Брауна: при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воз­действия ослабляется.

Ритмичность. Биосфера проявляет ритмичность развития — повторяемость во времени тех или иных явлений. В природе существуют ритмы разной продолжительности. Основные из них — суточный, годовой, внутривековые и сверхвековые. Суточный ритм проявляется в изменении температуры, давления и влажности воздуха, облачно­сти, силы ветра, в явлениях приливов и отливов, циркуляции бризов, про­цессах фотосинтеза у растений, поведении животных. Годовая ритмика — это смена времен года, изменения в интенсивности почвообразования и разрушения горных пород, сезонность в хозяйственной де­ятельности человека. Суточная ритмика, как известно, обусловлена вращением Земли вокруг оси, годовая — движением Земли по орбите вокруг Солнца. Разные экосистемы обладают различной суточной и годовой ритмикой. Годовая ритмика лучше всего выражена в умеренном поясе и очень слабо — в экваториальном. Наблюдаются и более продолжительные ритмы (11, 22—23, 80—90 лет и др.). Ритмиче­ские явления не повторяют полностью в конце ритма того состояния природы, которое было в его начале. Именно этим и объясняется направленное развитие природных процессов.

^ Горизонтальная зональность и высотная поясность. Общебиосферной закономерностью является горизонтальная зональность - закономерное изменение природной среды по направлению от экватора к полюсам. Зональность обусловлена неодинаковым количеством поступающего на разные широты тепла в связи с шарообраз­ной формой Земли. Зональный климат, воды суши и океана, процессы выветривания, некоторые формы рельефа, образующиеся под влиянием внешних сил (поверхностных вод, ветра, ледников), растительность, почвы, животный мир.

Наиболее крупные зональные подразделения — географические пояса. Они отличаются друг от друга температурными условиями, а также общими особенностями циркуляции атмосферы, почвенно-растительного покрова и животного мира.

Способность быстро занимать (осваивать) все свободное пространство. В.И. Вернадский назвал это всюдностью жизни. Данное свойство дало основание В.И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Способность быстрого освоения пространства связана как с интенсивным размножением (некоторые простейшие формы организмов могли бы освоить весь зем­ной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные возможности размножения), так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастающих на 1 га, составляет 8—10 га и более. То же относится к корневым системам.


^ Движение не только пассивное, но и активное, т.е. не только под действием силы тяжести, гравитационных сил и т.п., но и против течения воды, силы тяжести, движения воздушных потоков и т.п.

^ 3 Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты веществ). Благодаря саморегуляции живые организмы способны поддерживать постоянный химический состав и условия внутренней среды, несмотря на значительные изменения условий внешней среды. После смерти эта способность утрачивается, а органические остатки очень быстро разрушаются. Образовавшиеся органические и неорганические вещества включаются в круговороты.


^ Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Напри­мер, некоторые организмы переносят температуры, близкие к значениям абсолютного нуля —273°С, микроорганизмы встречаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых панцирях и т.п.


^ Феноменально высокая скорость протекания реакций. Она на несколько порядков значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых потребляют за день количество пищи, которое в 100— 200 раз больше веса их тела. Дождевые черви (масса их тел пример­но в 10 раз больше биомассы всего человечества) за 150—200 лет пропускают через свои организмы весь однометровый слой почвы. По представлениям В.И. Вернадского, практически все осадочные породы, а это слой до 3 км, на 95—99 % переработаны живыми организмами.


^ Высокая скорость обновления живого вещества. Подсчитано, что в среднем для биосферы она составляет 8 лет, при этом для суши — 14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), — 33 дня. В результате высокой скорости обновления живого вещества за всю историю существования жизни общая масса живого вещества, прошедшего через биосферу, пример­но в 12 раз превышает массу Земли. Только небольшая часть его (доли процента) законсервирована в виде органических остатков (по выражению В.И. Вернадского, ушла в геологию), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нем больших запасов энергии. По В.И. Вернадскому, по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов.

Выделяют следующие основные геохимические функции живого вещества.

^ 1. Энергетическая (биохимическая) — связывание и запасание солнечной энергии в органическом веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и дру­гими процессами жизнедеятельности организмов. Основной источник биогеохимической активности организмов — солнечная энергия, используемая в процессе фотосинтеза зелеными растениями и некото­рыми микроорганизмами для создания органического вещества, обеспечивающего пищей и энергией все остальные организмы.


Газовая — способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. В частно­сти, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т.п.). В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси, в атмосфере с десятков процентов до современных 0,03 %. Это же относится к накоплению в атмосфере кислорода, образованию озона и другим процессам. С газовой функцией живого веще­ства связаны два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1 % от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных орга­низмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд лет назад. Второй переломный период связывают со временем, когда концентрация кислорода достигла примерно 10 % от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных ультрафиолетовых лучей выпол­няла вода, под слоем которой возможна была жизнь).

Концентрационная — «захват» из окружающей среды живыми организмами и накопление в них (в большей степени, чем в окружающей среде) атомов биогенных химических элементов. Питание, дыха­ние и размножение организмов и связанные с ними процессы созда­ния, накопления и распада органического вещества обеспечивают по­стоянный круговорот вещества и энергии. С этим круговоротом свя­зана миграция атомов химических элементов (прежде всего биоген­ных — С, Н, О, N, P, S, Fe, Mg, Ca, Na, К, Mo, Mn, Cu, Zn и др.). В ходе биогеохи­мических циклов атомы большинства химических элементов проходи­ли через живое вещество бесчисленное число раз. Так, например, весь кислород атмосферы оборачивается через живое вещество за 2000 лет, углекислый газ — за 200 (300) лет, а вся вода биосферы — за 2 млн лет. Разные организмы в разной степени способны аккумулировать из среды обитания различные элементы, например, железобактерии накапливают железо; простейшие фораминиферы, а также многие моллюски и кишечнополостные — кальций; хвощи, диатомовые водоросли, радиолярии и др. — кремний; губки — йод; асцидии — ванадий, и т.д. Концентрационная способность живого вещества повышает содер­жание атомов химических элементов в организмах по сравнению с окружающей средой на несколько порядков. Содержание углерода в растениях в 200 раз, а азота в 30 раз превышает их уровень в земной коре. Содержание марганца в некоторых бактериях может быть в миллионы раз больше, чем в окружающей среде. Результат концентрационной деятельности живого вещества — образование залежей горючих ископаемых, известняков, рудных месторождений и т.п.


Окислительно-Восстановительная — окисление и восстанов­ление различных веществ с помощью живых организмов. Под влиянием живых организмов происходит интенсивная миграция атомов эле­ментов с переменной валентностью (Fe, Mn, Сг, S, P, N, W), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода и т.п.


Деструктивная — разрушение организмами и продуктами их жизнедеятельности, в том числе и после их смерти, как остатков орга­нического вещества, так и косных веществ. Наиболее существенную роль в этом отношении выполняют редуценты (деструкторы) — сапротрофные грибы и бактерии.


Транспортная — перенос вещества и энергии в результате активной формы движения организмов. Такой перенос может осуществляться на огромные расстояния, например, при миграциях и кочев­ках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например в местах их скопления (птичьи базары и другие колониальные поселения).


Средообразующая — преобразование физико-химических параметров среды. Эта функция является в значительной мере интег­ральной — представляет собой результат совместного действия других функций. Она имеет разные масштабы проявления. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локальные структуры. К средообразующим свойствам растительного покрова относятся: создание микроклимата, очистка воздуха и вод от загрязняющих веществ, усиление питания грунтовых вод, защита почв от эрозии и т.п.


Рассеивающая — функция, противоположная концентрационной — рассеивание веществ в окружающей среде. Она проявляется через трофическую и транспортную деятельность организмов. На­пример, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п. Железо гемоглобина крови рассеивается кровососущими насекомыми.

9 Информационная — накопление живыми организмами определенной информации, закрепление ее в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

^ 10. Биогеохимическая деятельность человека — превращение и перемещение веществ биосферы в результате человеческой деятельности для хозяйственных и бытовых нужд человека. Например, использование концентраторов углерода — нефти, угля, газа и др.

Таким образом, биосферу можно также определить как сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путем обмена веществ между живым веществом и окружающей средой.
do.gendocs.ru/docs/index-9457.html?page=4